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POINT SOURCE REPRESENTATION OF ANTENNAS AND OBSTACLES

1. Introduction

In the report “Point Source Radiation Pattern Synthesis by Iterative

Techn ique s” (11 a method was presented to synthesize radiation patterns of

planar arrays of point sources. More recently Raschke and Sterling [2] have

proposed the idea of representing the superstructure elements of a ship

such as deck houses, stacks, fences, etc., by vertical wires. One of the

authors [31 has then suggested that all antennas and wires be represented by

an equivalent point source and the techniques used in [1] be applied to the

problem of optimally locating antennas aboard ships .

The difficulty of this appro ach is that in order to obtain the point

source representation of the wire s and antennas , the entire problem has to

be solved by some technique such as the Method of Moments (MOM) for every it-

eration . If the total number of wires is large , then the procedure becomes

• very costly in computer time and may preclude the solution of the problem.

The purpose of this report is to investigate a possible si~~1if ication

of ths above problem by making the hypothesi s that “all wires of the same

obstacle will have current distribut ions which are essentially of th. same
• shape. They wiu differ in magnitude by a factor KA/d and in phase by 2wd/A”

If this is true, it will only be nscessary at the beginning of the iterative

procedur. to solve the considerably smaller MOM problem of the antennas to

be located and one “typical” wire for each obstacle presen t. The currents in

all other wires of the s~~~ obstacle will then be derived from the “typical”

one by the above hypothesized relations . This will continue throughout the

1
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synthesis procedure. At the end , the problem can be resolved by MOM again to

chec k the accuracy of the result . If necessary, t he recomputed typical cur-

rents can be used as a starting point for a few more iterations .

2. Antenna with Obstacle

A situa t ion often encountered in shipboard antenna design problems is

that of an antenna in front of a deck—house as shown in Fig . 1. The whole

structure will initially be assumed over an infinite perfect ground plane .

To simplify the treatment of these problems, Raschke and Ster ling [2 1

made the hypo theses that (a) only the conducting plate facing the antenna is

importan t , and (b) this plate may be represented by a set of equally spaced

paral lel wires (parasite wires) as shown in Fig. 2.

The parasite wire length L is the same as the height of the plate. The

spacing s between adjacen t wires should be chosen as large as possible to re-

duce the computation work. Yet it cannot be so large as to become a poor

representation of the plate. Previous experience has shown that s - A/8

yields good results.

The current induced in each wire when the antenna is driven can be ac-

curately calculated by the method of moments (MOM) . However , if this approach

is used in the pro blem of locating shipboard anten nas , one execution of a MOM

algorithe is requi red at each iterat ion step . This is expens ive and unneces-

sary since approximate currents for the intermediate iteration steps will

serve as well .

In the next two sections , vs prop ose a simple relation to obtain approxi-

mate parasite current s for any value of d , the distance from the antenna to

the parasite wires

2
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3. Adjacent Wires Coupling Effect

From experience , we would expect that the current induced on a particular

wire is affec ted by the presence of all other wires through coupling. The

question arises of how many adjacen t wires should be included when the typical

wire current distribution is being calculated . To investigate this , we com-

puted the current on the typical wire for the different geometries shown in

Fig. 3, which correspond to cases of (1) no adjacent wires considered , (2) one

adjacent wire on each side , and (3) two adjacent wires on each side. The dis-

tance from a driven antenna to the center parasite wire is d and the parasite

wire length is L.

Fig. 4 shows the magnitude and phase of the current distributions on the

driven antenna and center parasite for conf igurations (1) , (2) and (3), and

d — .1). The lengths of the driven antenna and parasite wire are .25A and

.375A , respectively. The radius of all wires is .004A.

The current on the driven antenna remains nearly the same for all three

configurations. The parasite currents for configurations (2) and (3) nearly

coincide with each other.

Fig. 5 shows the normalized maximum parasite current (normalized to the

maximum current on the center parasite at d — .1A ) as a function of d for con—

• figurations (1), (2) and (3). It also shows the phase change for every Ad

. lA. If the 2iid/A hypothesis is true , this plot should be constant at 36°.

The curves of current magnitude and phase for configurations (2) and (3) are

very close to each other except in the vicinity of d — .5X .

The same procedure was used for the case of the parasite wires of length

. 325A and the results are shown in Figs. 6 and 7.

4
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It is observed from Figs. 4 through Fig . 7 that the configurations (2)

and (3) yield almost the same result . Therefore , we believe it is safe to

assume that configuration (2) of Fig. 3b takes into consideration most of the

mutual effects of the adj acent wires . It will be used from now on in our

calculations of the curr ent distribution on the parasite wires .

4. Parasite Current Studies

In this section , a series of computations are made based on the model of

Fig. 3b. The length of the driven antenna is .25) while the length L of the

parasite wires will be .125) , .166) , .25) , .375) , .5) and .75). The wire ra—

dius is .004).

The magnitude and phase of the current distribution on the driven and

parasite wires are shown in each case for d — .1), .6), 1.0) and 1.5) in the

following figures:

Pig. 8. a) .25) driven, b) parasite L — .125)

Fig. 9. a) .25A driven, b) parasite L — .166)

Fig. 1Q a) .25) driven, b) parasite L — .25)

Fig. 11. a) .25) driven, b) parasite L — .375)

Fig. 12. a) .25) driven, b) parasite L — .5)

Fig.. 13. a) .25) driven, b) parasite L — .75)

The current on the driven wire remains fairly constant as th. distance

d changes from .1) to 1.5) for most cases . However, if the parasite wire

length is nearly equal to the driven wire length , the current on the driv en

wire is sensitive to the change of distance d as shown in Pig . 9 CL — .166) )

and Fig. 10 CL— .23A) .

Tb. magnitude and phase distribution for the parasite wire cur rent is

10
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quite regular for all lengths , L < .5A.

The normalized maximum parasite current s as a function of d for L —  . 125).,

.166)., .25)., .375)., and .5). are suimsarized in Fig. 14 with d changing from

.1). to 2.0).. From this plot it is seen that the change in the current aagni— %

tude with d closely resembles K/d as shown in Fig. 15 , if the prope r value of

K is selected . The phase change for the steps t~d — .lA isnearly constant and

equal to 36° for d > .5).. Even for values of d smaller than .5). the devia—

tion is quite acceptable for radiation pattern purp oses .

After some experi menting , we found that , for L in the range of value s

studied , for d > .8). the magnitude and phase of the parasite current distri—

bution are uniform and inversely proportional to d. We can relate the cur-

rents for d > .8). to their computed value at d — . 8). by the following simple

relations.

i i  K
• 1 I~ (d) — (d/) )

- 
(1)

0(d) • (d — .8).) + 0( .8A) U

where K is a constant to be determined from

-
~j ’ III(.8~)

• 
where I J ( . 8A ) is the current magnitude at d — .8).

$(. 8A) is phase of the current at d — .8)..

As an example for L .125)., K — 2.24 and Fig . 16 shows in the •olid

line a plot of curve (1) of Fig. 14 and in the X’ s, the computed values for

111(d) — 2.24/(d/A). The agreement is very good indeed. Similar results are

obtained for the other values of L. The representation is especially good
• f o r d > .SA .

5. Equivalent Point Source

Th. parasite wire cur rent can be obtai ned for any value of d by using W14

17
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• once for d — .8). and equations (1) . Af ter the curren t is obtaine d for every

parasite wire of Fig. 2, each wire can be treated as a point source I~, by

sumeing the phasor contribution of each current element in the desired angle

as shown in Fig. 17 by the equation

2nl. sine
N j( 

~1
—

i—O

Af ter all equivalent point sources have been obtained , the problem of Fig. 2

can be treated by the synthesis program referred to in section 1 [1] as a

planar array of point sources.

6. Conclusions and Recomsendatio ns.

It seems that the hypotheses set forth in the introduction of this repor t

have bean satisfactorily verified . Before we proceed and apply these results

to the proble m of opt imizing the antenna site on ship s, we would like to veri-

fy further the hypothesis set forth by Raschke and Sterling [2] and stated in

section 2 of this report . The computations made by them referred to infinite-

ly long cylinders. We would like to use the body of revolution computer pro-

• gram 14) and MOM program to check the same hypothesis for finite size cylin-

ders. The influence of the wire separation S, the number of wires , and wir e

rad ius can be very easily studi ed with the use of these codes.
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